[ATLAS ALAM SEMESTA] Adakah makhluk hidup (berakal) di luar bumi, diluar angkasa ?
<span>Komposisi benda angkasa dilangit pada paparan awal TS adalah yang 'terlihat' (visible dari univers)...
Ada yang tak terlihat pada alam semesta kita, tetapi merupakan bagian dari 'isi' alam semesta ?
ADA... dan prosentasenya jauh lebih besar, ada dark matter dan dark energy, materi gelap dan eneri gelap, sebuah istilah yang karena belum jelasnya apa gerangan?... tetapi eksistenisnya harus ada karena keseimbangan alam semesta dan gejala gejal yg ditimbulkannya membutuhkan 'eksistensi' tsb.
<span>Materi normal yang membentuk bintang-bintang ternyata hanya kurang dari 5% </span>dari seluruh materi alam semesta... seperti HIASAN saja dari kebesaran pada langit semesta... ada 95 % masih misteri..
(banyangkanlah lukisan biantang-bintang (menyusun cluster dan supercluster) mengisi 5% figura, latar belakang warna gelap).. Kompsisi alam semesta..
Sejarah alam semesta yang bermula dari Big Bang..
Big Bang adalah teori atau model evolusi alam semesta yang dapat diterima valid oleh hampir seluruh ilmuwan, dan telah dikonfirmasi oleh banyak pengamatan.
Konfirmasi terjauh dari model Big Bang diatas adalah pada Cosmic Microwave Background (CMB/Latar Kosmik Gelombang Radio). yang mucul pada umur 300-400 rb tahun setelah Big Bang.
Seperti halnya cahaya tampak (pada panjang gelombang 380 nanometer – 780 nanometer), CMB juga terdiri dari partikel cahaya (foton), tapi pada panjang gelombang radio (sekira 1 milimeter sampai dengan 10 milimeter). Foton-foton CMB ini mengisi penuh alam semesta kita dengan kerapatan 400 per cm3--kira-kira ada 400 foton CMB menembus ujung ibu jari kita setiap saat. Jadi, dari satu sisi, Olbert benar bahwa seharusnya Bumi kita dihujani cahaya dari segala arah, sayangnya cahaya itu bukanlah cahaya tampak.
Satelit COBE (Cosmic Background Explorer) yang diluncurkan pada tahun 1989 mengukur temperatur CMB saat ini 2,725 +/- 0,002 derajat K (disebut juga temperatur alam semesta) dan membuktikan bahwa radiasi CMB mengikuti hukum Radiasi Kotak Hitam (Blackbody Radiation). Selain mengukur temperatur, satelit COBE juga “memotret” CMB dan menemukan fluktuasi kecil temperatur pada CMB (anisotropi CMB). Fluktuasi ini kemudian dipelajari sebagai indikasi bagaimana materi dan radiasi terdistribusi saat alam semesta masih sangat muda. Pemahaman ini adalah kunci untuk memahami bagaimana galaksi dan struktur berskala besar pengisi alam semesta kita terbentuk.
COBE kemudian dilanjutkan oleh satelit WMAP (Wilkinson Microwave Anisotropy Probe) untuk mendapatkan fluktuasi CMB dengan akurasi lebih tinggi (Gambar 4). Satelit ini diluncurkan pada tahun 2001 dan memberikan hasil lebih mengejutkan daripada COBE. Salah satunya adalah perhitungan kandungan alam semesta yang terdiri dari komposisi 4 persen dari materi dan radiasi yang kita kenal, 22 persen dari materi tak dikenal (disebut dark matter), dan 74 persen dari energi yang misterius (disebut dark energy). ”Dark matter” &”dark energy”
Dark matter terdeteksi dari ketidakcocokan antara perhitungan per putaran galaksi Bima Sakti dan pengamatan langsung kecepatan galaksi. Dari pengetahuan kita tentang sifat fisik galaksi Bima Sakti kita bisa menghitung kecepatan perputaran galaksi. Namun, pengamatan menunjukkan hasil lain yang menandakan bahwa ada massa yang tidak teridentifikasikan dalam galaksi Bima Sakti. Massa yang tidak teridentifikasikan inilah yang dinamai dark matter.
Berbeda dengan lubang hitam (black hole), dark matter tidak memancarkan atau memantulkan radiasi. Ini membuat astronom kesulitan untuk mendeteksinya. Selain dari pengamatan kecepatan galaksi, dark matter bisa dideteksi dari pengaruh gaya gravitasi yang dipancarkannya. Satelit WMAP menyatakan 22 persen alam semesta terdiri dari dark matter.
Sementara dark energy adalah energi yang melawan gaya gravitasi – disebut juga anti-gravitasi. Energi ini sudah diprediksi oleh teori Relativitas Umum Einstein, energi inilah yang menyebabkan alam semesta sedang mengembang dengan percepatan tertentu, mengalahkan gaya gravitasi, seperti saat ini. Alam semesta mengembang dengan percepatan tertentu telah dibuktikan oleh Edwin Hubble (1889-1953), astronom Amerika Serikat, pada tahun 1929. Dan satelit WMAP mendeteksi 74 persen komposisi alam semesta adalah dark energy. Beberapa eksperimen berteknologi canggih dan beragam metode sedang dirancang untuk melacak lebih akurat mengenai eksistensi dark matter dan dark energy.
Sementara itu, materi yang terbuat dari atom-atom, atom-atom yang tersusun dari proton-neutron-elektron, dan proton-neutron yang terbuat dari quark, serta radiasi sebagai manifesto cahaya hanyalah mengisi 4 persen dari alam semesta kita. Dengan kata lain, ilmu fisika kita yang sudah kita anggap mapan hanyalah sanggup untuk menjelaskan 4 persen dari alam semesta kita – dan itu pun belum sempurna karena masih banyak hal-hal yang belum sempurna terjelaskan dari interaksi materi dan radiasi. Baik dark matter maupun dark energy adalah tambahan misteri di dunia sains kita.
Sumber ref.: - http://en.wikipedia.org/wiki/Universe - http://www.fisikanet.lipi.go.id/utam...&1172922078&25</span>
<span>IKHLAS:Bersama Ruang danWaktu T. Djamaluddin (Grubesar asronomi dan astrofisika Lapan)
Sejarah ruang dan waktu tidak terlepas dari sejarah alam semesta. Ruang dan waktu terbentuk bersamaan dengan pembentukan alam semesta. Tidak ada ruang di luar alam semesta. Dan tidak ada waktu sebelum ada alam semesta. Namun, dalam kajian fisika definisi waktu telah disederhanakan, tidak tepat lagi dengan pemahamanan manusiawi. Kadang sulit difahami dengan nalar awam.
Dalam kehidupan sehari-hari, pengalaman manusiawi terbagi dalam dua kelompok: Hal-hal yang objektif yang dapat dikenali dengan pancaindera tersebar dalam ruang. Sedangkan hal-hal subjektif (ide, pemikiran, kesadaran diri, emosi, dan sejenisnya) tersebar dalam waktu. Tidak dapat digambarkan dalam dunia nyata, tetapi mengungkapkan waktu masa lalu, sekarang, dan akan datang. Dalam fisika, waktu disederhanakan hanya apa yang tampak pada arloji atau pengukur waktu lainnya (misalnya, detak jantung, jumlah ayunan bandul, rotasi bumi, atau getaran atom).
Artikel ringkas ini sekilas mengulas sejarah alam semesta yang juga sejarah raung dan waktu. Dimulai dengan bahasa universal untuk memahami bagaimana alam bercerita tentang sejarah dirinya. Kemudian sekilas mengenal posisi kita – manusia – di alam semesta yang sebenarnya secara fisik tidak ada artinya dibandingkan dengan keluasan alam raya. Upaya memahami sejarah lahirnya alam semesta beserta evolusinya diulas dengan hasil-hasil sains terbaru diungkapkan secara ringkas mulai dari alam semesta secara keseluruhan sampai tata surya dan bumi. Juga diulas evolusi alam semesta dalam persepsi Al-Quran.
Walau tidak dibahas secara mendalam, ulasan tentang evolusi alam dimaksudkan juga untuk meluruskan antipati ummat terhadap sains karena kontroversi yang bersumber dari analisis yang keliru. Evolusi (termasuk evolusi makhluk hidup) adalah keniscayaan di alam yang sering disalahartikan dan dirancukan banyak orang hingga banyak ditentang kaum agamawan yang tidak faham. Analisis sosiologis digunakan untuk membantah teori sains, suatu hal yang tidak tepat.
Terakhir, untuk memaknai penjelajahan intelektualitas berbasis sains tersebut, diulas sekilas makna ikhlas dari pemahaman sejarah ruang dan waktu.
Bahasa Universal
Dalam astronomi, bahasa universal adalah cahaya atau lebih umumnya gelombang elektromagnetik (EM), termasuk sinar-X, sinar ultra violet, sinar infra merah, dan gelombang radio. Semua benda langit bercerita tentang dirinya dengan pancaran gelombang EM. Fisika dan matematika menjadi juru bahasanya.
Objek yang sangat panas, seperti pada peristiwa tumbukan materi yang sangat kuat akibat tarikan Lubang Hitam (Black Hole), bercerita tentang dirinya dengan pancaran sinar-X. Dengan fisika dapat ditafsirkan bahwa objek itu sangat panas dan dapat dikaji apa yang mungkin menyebabkannya. Objek-objek yang sangat dingin, seperti "embrio" bintang (protostar), bercerita banyak kepada astronom dengan pancaran sinar infra merah dan gelombang radio. Galaksi-galaksi yang sedang berlari menjauh memberikan pesan lewat spektrum cahayanya yang bergeser ke arah merah (red shift).
Sayangnya, sebagian besar materi di alam semesta tak memancarkan gelombang EM tersebut. Itulah yang dinamakan "dark matter" (materi gelap). 'Materi gelap' itu mencakup objek raksasa yang runtuh ke dalam intinya (misalnya Black Hole atau Lubang Hitam yang menyerap semua cahaya), objek seperti bintang namun bermassa kecil hingga tak mampu memantik reaksi nuklir di dalamnya (yaitu objek katai coklat), atau partikel‑partikel subelementer. Penemuan di penghujung abad 20 baru lalu bahkan lebih mengagetkan (karena tidak terduga sebelumnya) para pakar kosmologi sendiri: Ternyata hanya 4% isi alam semesta yang kita kenali materinya (materi barionik, terbuat dari proton dan netron). Selebihnya 23% 'materi gelap' (non-barionik) dan 73% berupa 'energi gelap' (dark energy, istilah baru dalam kosmologi modern).
'Materi gelap' ini ibarat orang bisu. Kita tak dapat mendengar kisah mereka tetapi kita yakin mereka ada dihadapan kita. Kita hanya bisa menangkap isyarat‑isyarat yang diberikannya. Isyarat‑isyarat tak langsung itulah yang ditangkap oleh para astrofisikawan untuk mendengar kisah "materi gelap". Isyarat-isyarat itu bisa berupa pancaran sinar‑X dari bintang yang berpasangan dengan Black Hole atau dari efek gravitasi pada objek di dekatnya.
Sekedar contoh, inilah cara Black Hole bercerita bahwa dirinya ada. Pancaran sinar-X yang kuat bisa bercerita bahwa di sana ada obyek yang sangat panas. Dengan telaah fisika kemudian diketahui bahwa panas itu terjadi karena ada materi dari suatu bintang yang sedang disedot oleh benda yang kecil bermassa sangat besar yang menjadi pasangannya. Materi yang jatuh pada bidang yang sempit di sekitar benda penyedot itulah menimbulkan panas yang sangat tinggi yang akhirnya memancarkan sinar-X. Dari isyarat-isyarat lainnya disimpulkan bahwa penyebab perpindahan materi itu adalah sebuah Black Hole yang sedang menyedot materi dari bintang pasangannya, seperti teramati pada objek Cygnus X-1.
Kini di awal abad 21, 'materi gelap' makin gelap lagi. Observasi astronomi masih sulit mendeteksi keberadaannya, karena mulai bergeser ke pengertian yang lebih sempit sebagai materi non-barionik. Hanya fisika partikel yang kini diharapkan menjadi 'juru bahasanya' dari ungkapan-ungkapan abstrak matematis. Dari tiga jenis partikel anggota 'materi gelap', baru netrino yang sedikit dikenali. Selebihnya masih dianggap materi hipotetik: axion dan neutralino.
Tidak ada komentar:
Posting Komentar
Apa komentar dan pendapat anda? Adakah saran untuk admin?